Referat J2EE

[image: image1.png]

Lutz Dietrich

&

Hans-Bodo Kluge

Gruppennummer: 21729901

Datum: 24.03.2001

Fachhochschule Heidelberg

Fachbereich Informatik

Computer Science

Contents

2Contents

31
Introduction

32
Overview of Java

32.1
What is Java?

42.2
Java is Middleware

52.3
History of Java

63
Product Platforms

63.1
Platform Concepts for Software

83.2
Java as a Software Platform Product

104
Advantages of the Platform Strategy

125
Conclusion

13References

1 Introduction

Few single products have changed the software industry as much as did Sun Microsystem's Java programming language during the last years. Java is a major buzzword of today's Internet talk. Several magazines are devoted exclusively to this language and the World Wide Web (WWW) would look quite different without this language. What are the reasons for this success? We think that most of Java's key factors for success stem from its platform design. Like with “normal" products, software can be constructed on a platform basis. We think that the advantages of platforms that can be achieved for manufactured products are valid for software platforms as well. In this paper we will give an overview of the Java language, its platform design and how Sun used this design principle to make Java successful.

2 Overview of Java

In this chapter, we will try to give a short and sufficient overview of the Java programming language in order to allow the reader to understand the discussion of platform concepts in the following chapters.

2.1 What is Java?

Although Java is mostly referred to as a programming language, this is not the whole thing. Java applications consist of two parts. A basic program, the so called Java Virtual Machine (JVM) needs to be installed on every computer that wants to run Java applications. This JVM translates the instructions of the actual Java programs, that may be distributed over the net or installed locally on a computer's disk drive, into machine dependent code in realtime.

Java is an object oriented programming language. This is the most modern concept in the theory of programming languages. We will not explain details of object orientation, but note that it makes reuse of code a lot easier by combining data structures with procedures working on the actual data. Deeper insights in object orientation can be found in. However, with the basic language concepts of Java it would be rather hard to implement useful applications. To make this situation better, quite a few Application Programmers Interfaces (APIs) have been developed by Sun and included with standard Java distributions. These APIs can be seen as libraries that provide the programmer with flexible modules for complex tasks such as Graphical User Interfaces (GUIs) or communication with other computers over the Internet. We will see that the mechanisms provided by Java to include these APIs form the central part of Java's platform architecture.

2.2 Java is Middleware

Perhaps the most useful approach to understanding the nature of Java is to see it as Middleware. Let us now explain what we understand by this term. Today's computer systems are very complex, and one of the main topics in computer science is to reduce this complexity. The most common approach to this task is a so called layered architecture, which can be described as follows:

Assume we are given a computer with a certain set of instructions. We want to perform a certain, quite complex, task on this computer. The computer's instruction set is now seen as the lowest layer, i.e. layer 1. We use these instructions to develop simple modules that can be seen as instructions on a higher layer, i.e. layer 2.

Instructions of layer 2 can now again be used to develop even more complex instructions, and we can iterate this process up to the point, where our intended task can be performed by a single instruction from layer n.

Operating systems like Microsoft Windows 98 or Linux can now be seen as the software layer between the actual hardware and application programs. As all applications depend on the operating systems they are intended to run on, operating systems are often referred to as platforms.

Figure 1: Normal layers in a computer system

Middleware is software that represents an additional layer between the operating system and the application, as can be seen in Figure 2. Java can now be seen as Middleware, with the Java Virtual Machine being the program linking the operating system APIs with Java's APIs. As a result, Java programs should be able to run on every computer platform regardless of the underlying hardware or operating system.

Figure 2: Middleware as additional layer

2.3 History of Java

Java was originally developed by a small group of programmers at Sun. Java should be processor independent, i.e. it should be possible to run programs written in this language on whatever hardware, unlike normal programs, that have to be modified quite a bit if they should run on another processor as originally intended.

Sun introduced the first version of the Java programming language in 1995 as part of Netscape's Navigator Web browser. Being part of the most popular browser allowed Java to gain a large user base within a very short time. Having had enormous access in the World Wide Web, Sun made use of the platform features in Java, as we will see in the remaining part of this paper. The company extended Java to a fully working programming platform that allowed developers to apply the “write once, run any where" principle. With the introduction of the second version in July 1999, Java had reached a volume of eight times the original version's, completing the necessary core set of interfaces to allow programmers to write complete applications and not only programs for Web pages, so-called “applets" with limited functionality.

3 Product Platforms

In this chapter, we will explain the platform principle to computer software and show that the Java programming language is an excellent example for software platforms.

3.1 Platform Concepts for Software

Software can be divided up in modules linked by well defined interfaces, and one of the major efforts in today's software engineering research is to find principles how this is done in a way that allows efficient reuse of code.

 Consider a company producing two applications that both need to access data like video, graphics, text or network. In addition, both applications have several user interfaces, depending on the computer system they are used on, like Unix or Windows. Both user interfaces and input/output interfaces have been developed twice.

Figure 4: Software Design Without Platform Concepts

If our programs are now modularized in a way that allows simple plugging in of I/O or user interfaces, the situation changes radically:

As shown in Figure 5, we only need a single user interface and a single I/O interface.

Figure 5: Software Design With Platform Concepts

Java as an object-oriented programming language allows this modularization of applications written in it in a quite natural way. However, the purpose of this paper is not to show platform concepts of programs written in Java, but rather platforms concepts in Java itself. Let us now discuss why Java is a software product designed according to platform principles.

3.2 Java as a Software Platform Product

Sun has bundled its Java 2 Platform product into three product groups:

· Micro Edition,

· Standard Edition

· Enterprise Edition

Each product group addresses different needs and serves different interests of developers. Core of all Sun product is the Java Virtual Machine (JVM) which enables

software developers creating platform independent software products. Based on its three stand-alone editions Sun offers additional APIs that provide further support for developers. As already mentioned Java is an object-oriented programming language, which organizes functionality and promotes reusability by single modules called classes.

Furthermore, classes are bundled and stored in packages. These serve as libraries for reusing coded functionality in different software projects. Several tasks as input/output, graphical user interface, graphical data visualization and communication are recurring issues over and over again in different software projects. Having solved this issues once it is sought by developers taking advantage of those in further projects, too. This does not only save labor efforts, but leads to higher quality as validation and testing have already been successful in former projects.

Java offers packages which transport functionality even without giving insights on the underlying source code. Altogether there are 15 different packages available supporting software developers in recurring tasks.

The Java product family currently exists of three editions.

· The slimmest edition is the Java 2 Platform, Micro Edition (J2ME). It was designed for software development for consumer appliances like pagers, mobile phones, screenphones and digital set-top boxes. Small consumer appliances are normally equipped with less system resources than computer systems. Therefore special packages have been developed by Sun.

· The Java 2 Platform Standard Edition (J2SE) provides essential modules which enable developers writing, deploying and running applications. Abstracting from different computer platforms like UNIX, Microsoft's Windows, LINUX and Macintosh, software developers only have to focus on the Sun's Java platform which ensures compatibility on all of these computer forms. J2SE builds on the slim J2ME version for appliances. It has been enhanced by essential tasks of computer systems as database access and allows to make useofmuch higher system resources as memory, computation power and periphery. Nevertheless, the base of J2SE is still the Java Virtual Machine which allows abstraction from the underlying system.

· Sun's most enhanced Java product is the Java 2, Enterprise Edition (J2EE). It sits modularly on top of J2SE (see Figure 6). The design goals of J2EE are to provide a single standard for implementing multi-tier applications. Thus it provides a framework which defines a component architecture achieving a standard model for interoperability of java components. These components (JavaBeans) can be handled by programmers, but even more interesting changes in software projects get done more efficient by using building tools.

Furthermore, J2EE supports emerging technologies:

Java Servlets, Java programs that web servers can run to deliver content as a response to a client request, JavaServerPages enabling dynamic content incorporation on web pages, and the new XML technology which will substitute HTML, the current content representation standard.
On top of J2EE Sun offers the Application Programming Model which defines standards concerning the overall software design on a very high design level. The developer is supported by a variety of tools. Most important to mention is the compatibility test suite that assists the developer to validate his entire system according to the Java platform constraints. This guarantees full cross platform compatibility.

[image: image2.jpg]Java™ 2 SDK, Standard Edition

fcoreA [Ami [Database [Naming/Directory

o
*
&
0

il
©
s
o

a

@

o
o
o

<

Figure 6: Java 2 Platform, Enterprise Edition: The Principal System Architecture

Summarizing, Sun has bundled its Java capability in three products. All three of those are built on the same core module: the Java Virtual Machine. With its three products Sun Microsystems offers development systems for different needs. Further customization is achieved by several additional packages.

4 Advantages of the Platform Strategy

As mentioned previously, we do believe that Java's platform principles lead to enormous advantages for the manufacturer, in our case Sun Microsystems, and the developers.

· As we have already seen, Sun offers various editions of the Java product for different markets, ranging from home appliances to large-scale servers. Obviously, the platform approach in Java's development facilitated the production of different editions.

This can be explained as follows: once Sun had finished the implementation of a Java Virtual Machine for a specific computer system, basically all of the remaining Java APIs that have been previously written in Java could be added within seconds, creating a product for a completely different market with minimized effort. In addition, it was simple to bundle different APIs into different editions, as all editions were based on the same underlying technology. In consequence, Java Standard Edition can be seen as a subset of Java Enterprise Edition (see Figure 6), and Java Micro Edition can be seen as a subset of Java Standard Edition. Once Sun had finished the development of Java's Enterprise Edition, it was basically a matter of taking away parts of it to create the other editions. This would not have been possible without Java's platform architecture

· Sun offers the complete Java Development Kit consisting of a Java Virtual Machine, a compiler and a debugger, for free download from its homepage, including extensive documentation and tutorials to get started using Java as a programming language. For most computer systems, including Microsoft Windows systems, this is the most simple possibility for users to get a programming environment. In consequence, Java had great success among many groups of users, including academia, which likes Java as a good starting language for students of computer science. Although a lot of effort was necessary from Sun to set up the Standard Edition in this way, the free distribution pays off : once people are used to programming in Java, they eventually may want to develop business software for large servers or software for small computing devices without changing the programming environment they are used to. Due to Java's platform architecture, this gets easily possible. However, people have to pay quite a lot for the editions of Java that support these new environments, and Sun can make some money out of Java.

· Developing software is a complex task, and for highly specialized parts of certain software it is often better to let it develop by a third party being an expert in a certain field rather than developing it by oneself. To make this process successful, it is necessary to define clear interfaces between own code and third party code. The definition of these interfaces is again facilitated by Java's platform architecture. If Sun wants a third party to supply some parts of Java, say special database access modules, this can be done by adding additional packages provided by an external company. This was done so for some parts of Java's Enterprise Edition.

· Core of all Java products from Sun is the underlying Java Virtual Machine which enables software developers to abstract from specific hardware platforms. Even though Microsoft's operating system Windows still dominates the market the emerging operating system Linux is getting more and more interest. Developing software for the different operating systems as Linux or Macintosh version results higher costs. Using Java, the software product only has to be developed once. Java's general platform concept ensures compatibility to the underlying hardware layer. The Java platform is available today for the Windows, Linux, Unix, Sun Solaris and Macintosh operating systems.

· Apart from computer systems the Java platform is available for the consumer appliances market, too. Developers of embedded systems can easily scale their solutions up to computer systems: the language for mobile phones, desktop computers and servers is the same.

5 Conclusion

Java is a software product designed according to platform principles. These principles lead to several advantages that can be used directly by Sun, and several other advantages that increase Java's performance as a programming language.

We think that Java has an excellent position in the emerging market for small, almost invisible computer systems that are predicted to be the main future application of the information age. If you want to connect your coffee machine or your dryer to the Internet, Java is today the easiest way of doing so. However, it is not sure if customers really want to connect their everyday machines to the net, and in consequence Java's success depends on the market's ability to find reasonable applications for so called home appliances. Another threat for Java's success is arising out of Microsoft's monopoly in the operating systems market. As has been shown during the ongoing trial against Microsoft, this company tried with some success to hinder Sun at developing a platform independent Middleware that could possibly set an end to Microsoft's monopoly. It is an open question whether Microsoft's strategies will become successful.

References

We got our information for this article by attending sites named below:

[1] Early History of Java

http://java.sun.com/features/

[2] The Story of the Java Platform

http://java.sun.com/nav/whatis/storyofjava.html
[3] Sun updates Java strategy

http://www.computerworld.com/cwi/story/0,1199,NAV47_STO56530,00.htmlnews.nsf/all/9906163javaone
[4] Java Live - Java 2 Platform, Enterprise Edition (J2EE)

http://developer.java.sun.com/developer/community/chat/JavaLive/1997/jl0812.html
Layer 3: Application

Layer 2: Operating System

Layer 1: Hardware

Layer 2: Operating System

Layer 3: Middleware

Layer 4: Application

Program 1

Layer 1: Hardware

Program 2

Windows

Mac

Linux

Windows

Linux

Mac

Text

Graphics

Network

Text

Graphics

Network

Redundant I/O Interfaces

Redundant User Interfaces

Network

Graphics

Text

Mac

Linux

Windows

User Interfaces

I/O Interfaces

Program 2

Program 1

L. Dietrich & H. Kluge
Seite 4
25.03.2001

